Question 1 Find the products:

Answer

Ans. (i) The product of
$$\frac{4}{9} \times \frac{7}{12} = \frac{1 \times 7}{9 \times 3} = \frac{7}{27}$$

$$= \frac{-7}{2} = -3\frac{1}{2}$$

(iii) The product of
$$\frac{-3}{16} \times \frac{8}{-15}$$

(v)
$$\frac{5}{-18} \times \frac{-9}{20}$$

$$= \frac{5 \times (-9)}{-18 \times 20} = \frac{-45}{-360} = \frac{-45 \div 45}{-360 \div 45}$$

$$= \frac{-8}{-8} = \frac{-8}{8}$$
(vi)
$$\frac{-13}{15} \times \frac{-25}{26} = \frac{-13 \times (-25)}{15 \times 26} = \frac{325}{390}$$

$$=\frac{-1}{-8}=\frac{1}{8}$$

 $=\frac{325 \div 65}{390 \div 65} = \frac{5}{6}$

(vii) $\frac{7}{24} \times (-48) = \frac{7 \times (-48)}{24}$

 $= 7 \times (-2) = -14$

(viii) $\frac{-13}{5} \times (-10) = \frac{-13 \times (-10)}{5}$

 $= -13 \times (-2) = 26$ Ans.

$$= \frac{1}{1} \times \frac{-3}{2} = \frac{-3}{2} = -1\frac{1}{2}$$

(iv) The product of
$$\frac{6}{7} \times \frac{-21}{12}$$

$$= \frac{(-1) \times (1)}{2 \times (-5)} = \frac{-1}{-10} - \frac{1}{10}$$
The product of $\frac{6}{7} \times \frac{-21}{12}$

(11) The product of
$$-9 \times \frac{7}{18} = \frac{-1 \times 7}{2}$$
$$= \frac{-7}{2} = -3\frac{1}{2}$$

find multiplicative inverse.....

Answer

Question 2

Ans. (i) Multiplicative inverse of $\frac{-17}{12} = \frac{-12}{17}$ (ii) Multiplicative inverse of $-16 = \frac{-1}{16}$

(iii) Multiplicative inverse of $\frac{0}{2}$ = does not (iv) Multiplicative inverse of $\frac{-3}{-5} = \frac{-5}{-3}$

Multiplicative inverse of $\frac{2}{-5} = \frac{-5}{2}$

Question 3 Find the quotient

Answer

The quotient of
$$\frac{17}{8} \div \frac{51}{4}$$

$$= \frac{17}{8} \times \frac{4}{51} = \frac{1 \times 1}{2 \times 3} = \frac{1}{6}$$
The quotient of $\frac{-16}{25} \div \frac{15}{14}$

8 51 2×3 6

The quotient of
$$\frac{-16}{35} \div \frac{15}{14}$$

The quotient of
$$\frac{-16}{35} \div \frac{13}{14}$$

$$= \frac{-16}{35} \times \frac{14}{15} = \frac{-16 \times 2}{5 \times 15} = \frac{-32}{75}$$

The quotient of
$$\frac{-12}{7} + (-16)$$

$$= \frac{-12}{7} \times \frac{1}{-16} = \frac{-3 \times 1}{7 \times (-4)} = \frac{-3}{-28} = \frac{3}{28}$$

(2) The quotient of
$$-9 \div \left(\frac{-5}{18}\right)$$

$$= -9 \times \frac{18}{-5} = \frac{-162}{-5} = \frac{162}{5} = 32\frac{2}{5}$$

Question 4 Namestatement

Answer

Ans.
$$(i)\frac{-8}{9} \times \frac{-13}{7} = \frac{-8 \times 13}{9 \times 7} = \frac{104}{63}$$

and
$$\frac{-13}{7} \times \frac{-8}{9} = \frac{-13 \times -8}{7 \times 9} = \frac{104}{63}$$

$$\therefore \frac{-8}{9} \times \frac{-13}{7} = \frac{-13}{7} \times \frac{-8}{9}$$
Commutative property as law of

Commutative
$$\left(\frac{a}{b} \times \frac{c}{d}\right) = \left(\frac{c}{d} \times \frac{a}{b}\right)$$

$$\left(\frac{-3}{b} \times \frac{5}{b}\right) = \frac{-3}{b} = \frac{-3}{b}$$

(ii)
$$\left(\frac{-3}{4} \times \frac{5}{7}\right) \times \frac{-9}{11} = \frac{-3}{4} \times \left(\frac{5}{7} \times \frac{-9}{11}\right)$$

and
$$\frac{-3}{4} \times \left(\frac{5}{7} \times \frac{-9}{11}\right) = \frac{-3}{4} \times \frac{-45}{77} = \frac{135}{308}$$

Associative law of property

Associative law of
$$\left(\frac{a}{b} \times \frac{c}{d}\right) \times \frac{e}{f} = \frac{a}{b} \times \left(\frac{c}{d} \times \frac{e}{f}\right)$$

(iii)
$$\frac{-2}{3} \times \left(\frac{-5}{6} + \frac{7}{8}\right) = \left(\frac{-2}{3} \times \frac{-5}{6}\right) + \left(\frac{-2}{3} \times \frac{7}{8}\right)$$

$$\frac{-2}{3} \times \left(\frac{-5}{6} + \frac{7}{8}\right) = \frac{-2}{3} \times \left(\frac{-20 + 21}{24}\right)$$

$$\frac{-2}{3} \times \left(\frac{-5}{6} + \frac{7}{8}\right) = \frac{-2}{3}$$
$$= \frac{-2}{3} \times \left(\frac{1}{24}\right) = \frac{-2}{72}$$

and
$$\left(\frac{-2}{3} \times \frac{-5}{6}\right) + \left(\frac{-2}{3} \times \frac{7}{8}\right) = \frac{10}{18} + \frac{-14}{24}$$

$$= \frac{40-42}{72} = \frac{-2}{72}$$
Distributive law of multiplication over addition as:

Distributive law of multiplication addition as: $\frac{a}{b} \times \left(\frac{c}{d} + \frac{e}{f}\right) = \left(\frac{a}{b} \times \frac{c}{d}\right) + \left(\frac{a}{b} \times \frac{e}{f}\right)$

$$= \frac{40-42}{72} = \frac{-2}{72}$$
Distributive law of multiplication over addition as:
$$\frac{a}{b} \times \left(\frac{c}{d} + \frac{e}{f}\right) = \left(\frac{a}{b} \times \frac{c}{d}\right) + \left(\frac{a}{b} \times \frac{e}{f}\right)$$

and $\left(\frac{-2}{3} \times \frac{-5}{6}\right) + \left(\frac{-2}{3} \times \frac{7}{8}\right) = \frac{10}{18} + \frac{-14}{24}$

(iii) $\frac{-2}{3} \times \left(\frac{-5}{6} + \frac{7}{8}\right) = \left(\frac{-2}{3} \times \frac{-5}{6}\right) + \left(\frac{-2}{3} \times \frac{7}{8}\right)$

 $\frac{-2}{3} \times \left(\frac{-5}{6} + \frac{7}{8} \right) = \frac{-2}{3} \times \left(\frac{-20 + 21}{24} \right)$

 $=\frac{-2}{3}\times\left(\frac{1}{24}\right)=\frac{-2}{72}$

$$(iv) \frac{-18}{7} \times 1 = 1 \times \frac{-18}{7} = \frac{-18}{7}$$

$$\frac{-18}{7} \times 1 = \frac{-18}{7}$$

$$\frac{-18}{7} \times 1 = \frac{-18}{7}$$
multiplicative identity as

and $1 \times \frac{-18}{7} = \frac{-18}{7}$ multiplicative identity as $\left(\frac{a}{b} \times 1\right) = \left(1 \times \frac{a}{b}\right) = \frac{a}{b}$

(v)
$$\frac{-13}{17} \times \frac{17}{-13} = \frac{17}{-13} \times \frac{-13}{17} = 1$$

 $\frac{-13}{17} \times \frac{17}{-13} = 1$ and $\frac{17}{-13} \times \frac{-13}{17} = 1$

 $\frac{-13}{17} \times \frac{17}{-13} = 1$ and $\frac{17}{-13} \times \frac{-13}{17} = 1$ Existence of multiplicative inverse as

Existence of multiplicative inverse as
$$\left(\frac{a}{b} \times \frac{b}{a}\right) = \left(\frac{b}{a} \times \frac{a}{b}\right) = 1$$

 $(vi) \frac{-9}{7} \times 0 = 0$ Multiplicative property of zero as $\left(\frac{a}{b} \times 0\right) = \left(0 \times \frac{a}{b}\right) = 0$

$$= \frac{24}{36} - \frac{24 \div 12}{36 \div 12} = \frac{2}{3}$$
R.H.S.
$$= \frac{-4}{3} \div \frac{-8}{9} = \frac{-4}{3} \times \frac{9}{-8} = \frac{-36}{-24}$$

$$= \frac{36}{24} = \frac{36 + 12}{24 \div 12} = \frac{3}{2}$$

Ans.(i) L.H.S. = $\frac{-8}{9} \div \frac{-4}{3} = \frac{-8}{9} \times \frac{3}{-4}$

 $=\frac{-8\times3}{9\times(-4)}=\frac{-24}{-36}$

: It is false.

(ii) L.H.S. =
$$\frac{-7}{24} \div \frac{3}{-16} = \frac{-7}{24} \times \frac{-16}{3}$$

$$= \frac{-7 \times (-16)}{3} = \frac{112}{3}$$

$$= \frac{-7 \times (-16)}{24 \times 3} = \frac{112}{72}$$
$$= \frac{112 \div 8}{72 \times 9} = \frac{14}{9}$$

$$= \frac{112 \div 8}{72 + 8} =$$
R.H.S. = $\frac{3}{-16}$

$$= \frac{112 \div 8}{72 + 8} = \frac{14}{9}$$
R.H.S.
$$= \frac{3}{-16} \div \frac{-7}{24} = \frac{3}{-16} \times \frac{24}{-7}$$

$$R.H.S. = \frac{3}{-16} \div \frac{-7}{24} = \frac{3}{-16} \times \frac{24}{-7}$$
$$= \frac{3 \times 24}{-16 \times (-7)} = \frac{72}{-112} = \frac{72 \div 8}{-112 \div 8}$$

$$-16$$

$$-\frac{3\times24}{-16\times(-7)}$$

$$= \frac{9}{-14}$$

$$= \frac{9}{-14}$$

$$\therefore \text{ It is false.}$$

$$-14$$
∴ It is false.

(iii) L.H.S.
$$-\left[\frac{-3}{5} + \frac{-12}{35}\right] + \frac{1}{4}$$

ii) L.H.S.
$$-\left[\frac{-3}{5}\right]$$

L.H.S.
$$-\left[\frac{-3}{5}\right]$$
$$= \left[\frac{-3}{5}\right] \times \frac{33}{5}$$

$$L.H.S. - \left[\frac{-3}{5}\right] \times \frac{35}{-1}$$

$$= \left[\frac{-3}{5} \times \frac{35}{-15} \right]$$

$$= \left[\frac{-3}{5} \times \frac{35}{-12} \right] + \frac{1}{4}$$

 $\mathbb{R}H.S. = \frac{-3}{5} + \left[\frac{-12}{35} + \frac{1}{4} \right]$

 $=\frac{-3}{5}\left[\frac{-12}{35}\times\frac{4}{1}\right]$

 $=\frac{-3}{5} \div \left[\frac{-48}{35} \right]$

 $=\frac{-3}{5}\times\frac{35}{-48}=\frac{-7}{-48}$

$$s. - \left[\frac{-3}{5} \times \frac{35}{-12} \right]$$

$$= \left[\frac{-3}{5} \times \frac{33}{-12} \right] + \frac{1}{4}$$
$$= \frac{-105}{-60} + \frac{1}{14} = \frac{105}{60} \times \frac{4}{1} = 7$$

Question 6

fill in the blanks.....

Answer

- is the rational number that does not have a multiplicative inverse.

 and _____ are the rational numbers
- which are equal to their own reciprocals.

 The product of a rational number and its reciprocal is ______.
- The reciprocal of a positive rational number is
- number is _____

 The reciprocal of a negative rational number is _____

is not the reciprocal of any number.

- The multiplicative inverse of a rational number $\frac{1}{a}$, $a \neq 0$ is _____.
- Mas.

 (ii) 0 is the rational number that does not have a
- multiplicative inverse.

 (a) 1 and -1 are the rational numbers which are equal to their own reciprocals.
- (iii) The product of a rational number and its reciprocal is 1.
 - (iv) The reciprocal of a positive rational number is <u>positive</u>.
 - (v) The reciprocal of a negative rational number is <u>negative</u>.
 - (vi) 0 is not the reciprocal of any number.
- (vii) The multiplicative inverse of a rational number $\frac{1}{a}$, $a \neq 0$ is \underline{a} .

Question 7 the product ofothers.

Answer

Ans. Product of two rational numbers - -7

One number =
$$\frac{-8}{11}$$

$$\therefore \text{ Second number} = -7 \div \frac{-8}{11}$$

 $= -7 \times \frac{11}{-9} = \frac{-77}{-9} = \frac{77}{9}$ Question 8

Answer

Ans. Product of two rational numbers

One number = $\frac{-4}{3}$

Let x be the second number, then $x + \frac{-4}{3} = \frac{-16}{3}$

 $x = \frac{-16}{9} \div \frac{-4}{2} - \frac{-16}{9} \times \frac{3}{-4}$

 $=\frac{-48}{-36}=\frac{48}{36}=\frac{48\div12}{36\div12}=\frac{4}{3}$

 \therefore Second number = $\frac{4}{3}$ Ans.

$$= -7 \times \frac{11}{-8} = \frac{-77}{-8} = \frac{77}{8}$$
Question 8
the product ofothers.

 $=\frac{-16}{9}$

Question 9 By whatget.....

Answer

$$\frac{1}{26} + x - \frac{-8}{39} \implies \frac{1}{26} \times \frac{1}{x} = \frac{-8}{39}$$

$$\Rightarrow \frac{1}{x} = \frac{-8}{39} \times \frac{26}{1} = \frac{-16}{3}$$

$$\therefore x = \frac{-3}{16} \therefore \text{Required number} = \frac{-3}{16}$$

Question 10 divide.....and.....

Answer

Ans. Sum of $\frac{13}{5}$ and $\frac{-12}{7}$

 $=\frac{13}{5}+\frac{-12}{7}$

 $=\frac{91+(-60)}{35}=\frac{91-60}{35}=\frac{31}{35}$ Now, product of $\frac{-31}{7}$ and $\frac{1}{-2}$

 $-\frac{-31}{2} \times \frac{1}{2}$ $=\frac{-31}{14}=\frac{31}{14}$

 $\therefore \frac{31}{35} \div \frac{31}{14} = \frac{31}{35} \times \frac{14}{31} = \frac{14}{35}$

 $=\frac{14 \div 7}{25 \div 7} = \frac{2}{5}$ Ans.

Question 11 dividedeferen

Answer

Ans. Sum of
$$\frac{65}{12}$$
 and $\frac{8}{3} = \frac{65}{12} + \frac{8}{3}$

$$= \frac{65 + 32}{12} = \frac{97}{12}$$
Difference of $\frac{65}{12}$

Difference of
$$\frac{65}{12}$$
 and $\frac{8}{3} = \frac{65}{12} - \frac{8}{3}$
$$= \frac{65 - 32}{12} = \frac{33}{12}$$

$$\therefore \frac{97}{12} \div \frac{33}{12} = \frac{97}{12} \times \frac{12}{33} = \frac{97}{33} \text{ Ans.}$$

Question 12

Answer

Ans.Cost of 1 metre cloth = Rs
$$63\frac{3}{4}$$

$$= Rs \frac{255}{4}$$

$$= Rs \frac{255}{4}$$
∴ Cost of $3\frac{2}{5}$ metres = $Rs \frac{255}{4} \times \frac{17}{5}$

$$= Rs \frac{51 \times 17}{4} = \frac{867}{4}$$

= Rs $216\frac{3}{4}$ Ans.

 $= Rs \frac{255}{4}$

Question 13 findbroad

Answer

breadth =
$$16\frac{2}{5} = \frac{82}{5}$$
 m

Length × Breadth

$$= \frac{183}{5} \times \frac{82}{5} = \frac{183 \times 82}{5 \times 5}$$
 km²

$$-\frac{15006}{25} \text{ m}^2 = 600\frac{6}{25} \text{ m}^2 \text{ Ans.}$$

Question 14 findmeter

Answer

Side of a square plot =
$$8\frac{1}{2}$$
 m = $\frac{17}{2}$ m

Area = (Side)² = Side × Side

$$= \frac{17}{2} \times \frac{17}{2} \text{ m}^2 - \frac{289}{4} \text{ m}^2$$

a costpiece.

Question 15

Answer

Total length of piece of chord - $71\frac{1}{2}$ m No. of pieces = 26

Length of each piece =
$$71\frac{1}{2} \div 26$$
 m
= $\frac{143}{2} \div 26$
= $\frac{143}{2} \times \frac{1}{26}$ m

 $= \frac{143}{52} \text{ m} = \frac{143 \div 13}{52 \div 13} \text{ m}$ $-\frac{11}{4}$ m = $2\frac{3}{4}$ m Ans.

the arealength

Answer

Area of a room :

Breadth =
$$5\frac{1}{16}$$
 m

.. Length = Area + Breadth

 $= \left(65\frac{1}{4} + 5\frac{1}{16}\right) \text{ m}$

 $= \frac{261}{4} \div \frac{81}{16} = \frac{261}{4} \times \frac{16}{81} \text{ m}$

 $=\frac{4176}{324}=\frac{116}{9}-12\frac{8}{9}$ m Ans.

Ans. Area of a room = $65\frac{1}{4}$ m²

of a room =
$$\frac{1}{100} = 5 \frac{1}{100} = 0$$